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The vibration of an elastic wing with an attached cavity in periodically perturbed #ows is
analyzed. Because the cavity thickness and length ¸ also are perturbed, an excitation with
a "xed frequency u leads to a parametric vibration of the wing, and the amplitudes and spectra
of its vibration have nonlinear dependencies on the amplitude of the perturbation. Numerical
analysis was carried out for a two-dimensional #ow of ideal #uid. Wing vibration was described
by means of the beam equation. As a result, two frequency bands of a signi"cant vibration
increase were found. A high-frequency band is associated mainly with an elastic resonance of
the wing, and a cavity can add a certain damping. A low-frequency band is associated with
cavity-volume oscillations. The governing parameter for the low-frequency vibration is the
cavity length-based Strouhal number St

C
"u¸/;, where ; is the free-stream speed. The most

signi"cant vibration in the low-frequency band corresponds to approximately constant values
of Sh

C
and has the most extensive subharmonics. ( 2000 Academic Press
1. INTRODUCTION

CONSIDERATION OF THE HYDROELASTIC problem for a cavitating wing is provoked by a di$-
culty in the practice of model ship basins. Figure 1 is plotted on the basis of measurements
of sound pressure levels for a cavitating marine propeller and its model by Blake (1986); an
example of this di$culty is thereby provided. Results of a model test extrapolation
for full-scale condition by conventional formulas are shown. A discrepancy in this
extrapolation for the cavitating marine propeller with full-scale experimental data has
several peaks in the low-frequency band. This discrepancy is particularly signi"cant
in a high-frequency band that contains frequencies of the "rst elastic resonance of blades
of the full-scale marine propeller. A similar problem occurs with pumps. Therefore, it
is necessary to analyze unsteady hydroelastic e!ects in the cavitating #ow around the
blades and their responses to customary periodic excitations. An excitation of the
cavitating blade is caused mainly by a periodic variation of the incoming #ow. This
variation is associated with the blade rotation in a nonuniform velocity "eld (for example,
in the wake of a ship hull). A boundary layer pulsation also can contribute to this
excitation.

A reasonable initial step in a mathematical investigation of the cause of the above
discrepancy would consist of computations of an amplitude response of the blades to
0889}9746/00/070735#17 $35.00/0 ( 2000 Academic Press



Figure 1. Typical variations of a cavitating marine propeller pressure sound level with the frequency f (Hz):
***, model test results;*e*, full-scale data;**, conventional extrapolation of this model test for full-scale

conditions.
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mono-frequency excitations in the large band of frequencies. The fundamentals for such an
analysis, however, are not ready. The contemporary theoretical methods of cavitation
analysis are well developed for two-dimensional steady #ows (Rowe & Blottiaux 1993;
Amromin & Vaciliev 1994; Dang & Kuiper 1998). Nevertheless, even the recent investiga-
tions of unsteady cavitating #ows by Boulon & Chahine (1998) and Shin & Ikohagi (1998)
are far from an analysis of certain general characteristics of these unsteady phenomena
(including an analysis of hydrofoil amplitude responses). The elastic cavitating wings were
analyzed earlier in steady #ow only, by Rashad & Green (1990).

It is appropriate to emphasize that the hydroelastic problem for cavitating hydro-
foils/wings basically is di!erent from the hydroelastic problems in aviation, because three
media are interacting in the cavitating #ows, and an oscillating boundary between gas and
#uid introduces multi-frequency perturbations as a response to any excitation of the
incoming #ow, including the one-frequency excitation. Thus, the well-developed hydroelas-
tic theory of noncavitating wings cannot be a su$cient basis for this examination. The "rst
step in the examination of the e!ects of cavitation on the hydrofoil/blade vibration can be
done with several relatively simple assumptions that are not fully satisfactory. Particularly,
it concerns the Joukovski}Kutta condition. This condition is not good for both high values
of reduced frequencies (Archibald 1975) and large partial cavities (Amromin & Vaciliev
1994). Such assumptions in#uence numerical results, but do not prevent qualitative com-
parisons and "nding the most signi"cant aspects of an interaction of cavities with the elastic
wings.

The authors of this paper analyzed the two-dimensional cavitating #ows near elastic
wings; their goal in analyzing of hydroelastic e!ects on cavitating unsteady #ows was to
estimate the roles of di!erent physical factors. Their most signi"cant results were obtained
for a low-frequency band of the #ow excitation; the physical base of a nonlinear ampli"ca-
tion of vibrations by cavities was clari"ed. They found that this ampli"cation is associated
with a rise of the subharmonics for several signi"cant frequencies.
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2. MATHEMATICAL FORMULATION

An unsteady two-dimensional hydroelastic problem for the cavitating wing is considered
here. Let E, I, o, d (x) represent Young's modulus, the inertia moment, the density, and the
thickness of a wing, respectively. Let this thickness be small relative to the wing chord. The
wing vibration is described as a beam vibration in the bending motion. A time-dependent
wing camber line displacement < then can be determined by the following equation of the
#exural beam vibration:

L2
Lx2 AEI

L2<
Lx2 B#od

L2<
Lt2

"F, (1)

where F is a hydrodynamic force that acts along the perpendicular to the wing chord.
Because of the consideration of ideal incompressible #uid, a velocity potential U can be
introduced here, and F can be found from the integral of the #uid momentum equations (the
Euler equations). If S is the wing surface, N is normal to S (see Figure 2), and <

N
is the

velocity of the wing surface normal motion, then U is the solution of the following
boundary-value problem for the Laplace equation:

DU"0;
LU
LN

D
S
"<

N
, MgradUNxP!R

"Mcos a, sinaN, (2)}(4)

where a is the angle of attack of the wing. An additional condition must be applied at the
trailing edge of the wing (at x"C); usually, it is the Jukovski}Kutta condition. Because the
pressure within cavities is constant, the existence of a cavity over the wing makes it
necessary to add a boundary condition on the corresponding part of S. The substitution of
Figure 2. Sketch of the cavitating wing and of the #ow structure.
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the pressure constancy condition into the momentum equation results in the following
equation:

LU

Lt
#D gradU D2

sC
"1#p, (5)

where p"2 (P
00
!P

c
)/o*;2 is the cavitation number, o* is the density of the #uid, P

c
is the

pressure within the cavity, P
=

and ; are the pressure and the free-stream speed of the
unperturbed #ow upstream of the wing, and S

C
is the cavity surface. This surface must be

found for any given r using a selected cavity scheme. Generally, problem (2)}(5) with
a selected condition for the velocity at the trailing edge is a nonlinear unsteady problem.
Such a problem is still too di$cult for a detailed numerical simulation without further
simpli"cation. For this reason, the unsteady cavitating #ow is considered to be a perturbed
steady cavitating #ow and the following velocity potential is used:

U(x, y, t)"U
0
(x, y)#U

1
(x, y) e *u t#U

2
(x, y, C )#U

3
(x, y, Q), (6)

where the potential U
0

de"nes the time-average #ow, the potential U
1

gives the incoming
#ow perturbation, the potential U

2
is associated with the intensity C(x, t) of the vortices

(these vortices are distributed along the chord and downstream from the wing), and U
3

is
the potential of the sources. These sources are distributed along a part of the chord and have
a density of Q(x, t); thus, U

3
is de"ned by the following formula:

U
3
(x, y, t)"

1

n P
Sc

Q(x, t) ln D (x!f)2#y2 Ddf.

Because the combination of the potentials U
2

and U
3

is adequate for modeling of any
small-amplitude unsteady response and this combination allows the estimation of the e!ect
of the unsteady vortex wake on the #ow, it is possible to avoid the use of a quasi-steady
approach here.

The employment of the potential (6) generally can lead to an in"nite increase in the
left-hand side of equation (5) because of an increase of LU/Lt. This logarithmic in"nity can
appear at Dx DPR (or at D y DPR) if the total density of the sources does not equal zero.
The introduction of a "ctitious free surface far over the wing (at y">AC) removes this
mathematical di$culty from the 2-D analysis of the unsteady cavities.

Assume that the potential U
0

is known (as well as the time-average cavity length ¸), the
#ow perturbation is relatively small, and the cavity is thin. The wing displacement <, the
intensity of the vortices C and the density of the sources Q are then small, and condition (3)
can be linearized relative to the above-mentioned small quantities; then this condition can
be considered along the wing chord. It follows, then, that the cavity pulsation can be
analyzed as a small oscillation of the impermeable boundary of the potential #ow, all
derivations of the velocity potential can be approximated by linear functions, and the
following equation can be used for the density Q(x, t):

Q (x, t)"
L[H (x, t) LU/Lx (x, t)]

Lx
#

LH(x, t)

Lt
, (7)

where Q is presented as a function of the cavity thickness H [see a similar formula in Dowell
et al. (1995); actually, H is the distance between the cavity and the wing surface]. Conse-
quently, this density depends linearly on the oscillations of the cavity thickness. The cavity
length also oscillates. Keeping this in mind, equation (7) has to be considered in points with
the time-dependent abscissa x, which is quite complex. Of course, it would be preferable to
distribute sources along a "xed segment. It is possible to do such a "xing with the use of
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series relative to degrees of ¸/C, where ¸ is the time-averaged cavity length. An analysis of
this approach with consideration of the "rst degree of ¸/C is done in this paper, and the
time-dependent cavity length is presented as ¸

t
(t),l (t)#¸(C. It is important to note

that the cavity length oscillation modulus D l(t) D is not necessarily small relative to ¸ (see
several known experimental data presented in Figure 3).

Let the instantaneous abscissa of a point on the cavity be x#m l(t), where the values of
x and of the ratio m"(x!X

1
)/¸ do not depend on t (X

1
and X

2
are time-averaged

abscissas of the streamline detachment and reattac behind the cavity). Then the following
linear extrapolation of the time-independent function at the time-dependent point can be
introduced:

;
0
(x#m l )+;

0
(x)#

d;
0

dx

l (t)

¸

(x!X
1
) , (8)

where ;
0
"LU

0
/Lx is the unperturbed velocity. In such a relationship, the velocity ; is

a function of l and the time-averaged abscissa x, but the oscillations of the normal
component of the velocity are associated with the oscillations of H and the camber-line
oscillations. The substitution of equation (8) into equation (7) leads to the appearance of the
product of the time-dependent functions in the formulas for Q(x, t) and, consequently, in the
potential U

3
. This circumstance leads to an appearance of a multi-frequency response of the

cavitating wing on the mono-frequency excitation. Therefore, all unknown functions must
be de"ned as series. Thus,

<(x, t)"
M
+
k/1

<
K

e*ukt, (9)

where <
K
"v

1,k
(x)#iv

2,k
(x), and similar series have to be written for Q, H and C.

Moreover, the cavity length oscillation l (t) must be de"ned by the series

l(t)"
M
+
k/1

[l
1,k

#il
2,k

] e*ukt . (10)
Figure 3. The relative cavity-length oscillation magnitudes. Experimental data: e, Amromin et al. (1994) for
NACA-16009 hydrofoil; *, by Yamaguchi & Kato (1983) for EN hydrofoil;#, by Pellone and Rowe(1988) for

NACA-0010.
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Substitution of equation (10) into equations (7, 8) gives

Q
K
(x)"iJH

K
(x)#

L[H
K
(x);

0
(x)]

Lx
#

L;
0

Lx
(x)

K
+
S/1

H
s
(x) [l

1,k~S
#i l

2,k~S
], (11)

where J"k St is the Strouhal number based on the chord length C(St"uC/;). In this
result, the right-hand side of equation (11) contains a product of the coe$cients of the above
series even for small #ow perturbations.

Because the in"nite vortex wake runs along a radius downstream from the trailing edge of
the wing, the solution to the problem (2)}(4) can be found using a succession of the
Birnbaum equations. The original Birnbaum equation was deduced for periodically pertur-
bed #ows from equations (2) and (3), while taking into account the Joukovski}Kutta
condition in the form C

K
(1)"0 and the Helmholtz theorem for the vortex sheet. Such an

equation is convenient for computation; it reduces the unsteady problem for the in"nite
interval to a steady problem for the segment. For successive k indices, the following
succession of the equations is deduced:

d1
K

LU
1

Ly
"i J (<

K
#H

K
/2)!

1

n P
1

0

C
K

x!m
dm!

iJ

n P
1

0

C
K

e*J(x~z) P
=

J(z~x)

e*w

w
dwdz, (12)

where the symbol d1
K

is equal to 1 for k"1, but in other cases d1
K
"0. The chord length C is

taken as the unit of length in equation (12) and in what follows. For the well-known case of
the rigid noncavitating wing, M"1 in equation (10) and H

K
"<

K
"0 in equation (12). If

the hydrofoil is the #at plate (having a zero thickness) and H
K
"0 (without any cavity), then

equation (12) corresponds to the Theodorsen problem; thus, a match with the known
hydroelastic results is presented here.

The displacement<(x, t) for elastic wings must be determined from equation (1). Accord-
ing to the above assumptions, equation (1) was reduced to the following succession of
equations:

L2
Lx2

EI
L2<

K
Lx2

!od<
K
J2"o* (C

K
;

0
#iJ P

x

0

C
K

dz). (13)

Here the complex modulus of elasticity E"E
1

(1#ig) depends on Young's modulus E
1
for

the wing material and the dissipation coe$cient g. The "rst term on the right-hand side of
equation (13) describes the Joukovski force contribution to the hydrodynamic loads on the
wing, while the second term is associated with the added mass of the water. The following
conditions correspond to the rigid wing clamping in the points with the abscissas x"CX

a
and x"CX

c
:

<
K
(X

a
)"<

K
(X

c
)"

L<
K

Lx
(X

a
)"

L<
K

Lx
(X

c
)"0. (14)

This type of clamping is common for tunnel tests [see Franc et al. (1995), for example]. The
wing edges are free, so the edge forces and moments vanish:

L2<
K

Lx2
(0)"

L3<
K

Lx3
(0)"

L2<
K

Lx2
(1)"

L3<
K

Lx3
(1)"0. (15)

Equation (5) has to be considered only along the cavity, where ;
0
"J1#p in the

time-averaged #ow. Taking into account equation (11) and using linearizations for equation
(5) in the whole, it is possible to use the cavity length oscillation as a small parameter. This
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equation then can be transformed into succession of the following set of equations:

2Jd1
K

LU
1

Lx
#;

0

LC
K

Lx
#(Lp/L¸) [l

1,k
#il

2,k
]#iJC

K
"

1

n P
X1

x
C
;
0
Q

K
X

1
!z

!iJQ
KD

dz

x!z
. (16)

The coe$cients of equation (16) contain quantities which are the result of computations
of the time-averaged cavitating #ow around the same wing: these quantities are;

0
and p(¸).

;
0
is the result of a computation for the "xed p, but the functions p (¸) can be obtained only

from a succession of such computations. This function relates to the general cavitation
performance of the wing in steady #ow. Examples of these computations for the 2-D wing
NACA-16009 within a narrow tunnel are presented in Figure 4; the numerical results by
Amromin & Vaciliev (1994) and by Rowe & Blottiaux (1993) are very close to the
experimental data.

Finally, one needs to "nd the cavity length oscillation l(t). The necessary equation
appears from the geometric condition: it is clear from equation (7) that the linear depend-
ence of Q on the limited cavity thickness H demands that only the limited values of Q be
used. The singular integral equation (16), however, can have a limited solution Q

k
(x) only

when the following additional condition is satis"ed (Gakhov 1966):

P
X

2

X
1

G(x)

J(X
2
!x) (x!X

1
)
dx"0, (17)

where G(x) is the left-hand side of equation (16). It is possible to determine the oscillation of
the cavity length l

k
from equation (17) for all values of k. Thus, equations (7), (12), (13) and

(16) with conditions (14), (15) and (17) make it possible to determine the four functions<, Q,
H, C and the value of l for any value of t. The more detailed forms of these equations (with
the separation of their real and imaginary parts) were written recently by Kovinskaya and
Amromin (1998).
Figure 4. Computations of measured cavity length and computed time-averaged cavity length over NACA-0010
hydrofoil. *, Rowe & Blottiaux (1993) method; ** , Amromin & Vaciliev (1994) method; e, minimum of the

measured length; #, maximum of the measured length.
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Keep in mind that computation of the oscillations of the hydrodynamic quantities in
cavitating #ows is the main goal of this analysis. These oscillations are associated with
cavity volume and body (blade) lift. Thus, the oscillations of the wing lift and the cavity
volume are the principal results here. The series for the lift coe$cient and the cavity volume
oscillations are introduced as

C
l
"

M
+

m/1

D C
lm

D e*umt, w"

M
+

m/1

D=
m
D e*umt .

The customary way to estimate periodic perturbations is to consider a gust #ow. Then the
velocity perturbation potential has to be used in the form U

1
"uy, where u is a small

constant. The following dimensionless characteristics are introduced for the analysis of the
numerical results:

<
-%!$

"

1

C P
C@2

0

<dx, <
53!7

"

1

C P
1

C@2

<dx, C
y
"C

l
;/u, ="w;/uC2 . (18)

Two di!erent de"nitions of the camber-line displacement result from the intention to show
the cavity in#uence on this displacement; this in#uence is associated with pressure redis-
tribution under the cavity. It is necessary to stress at this point the use of the terminology:
&&lift oscillation'' and &&cavity volume oscillation'' relates to the two last dimensionless
parameters only.

The just-described mathematical model of the cavitating wing vibration operates with
eight dimensionless parameters. These parameters are the cavitation number p, the
Strouhal number St, the ratio R

1
"o*/o of #uid and wing material densities, the parameter

k"E
1
/(o;2) that is the square of the ratio of the sound velocity in the wing material to the

free-stream speed (this parameter is analogous to the square of a Mach number), the relative
amplitude of a gust #ow u, the coe$cient of loss g for the wing material (for metals this
coe$cient usually varies from 0)05 up to 0)2), and two parameters related to cavitation (the
cavity length and the cavity detachment point). The abscissas of the clamping points also
could be considered as parameters of this mathematical problem.

3. VIBRATION OF NONCAVITATING WINGS

In looking for the cavitation e!ects on wing vibration in a gust #ow, it is necessary to carry
out a preliminary analysis for noncavitating wings. The dimensionless lift and deformations
(18) are studied as functions of the Strouhal number. A typical example of such functions is
presented in Figure 5. It shows an amplitude response of the lift oscillation. The basic
examples for both noncavitating and cavitating #ows are examined in this paper for
k"0)006, R

1
"0)36 (this value corresponds to the water}aluminum pair), and g"0)05.

This triad of values is usually used in the computations presented, and only a parameter
from this triad can be varied in these computations. Thus, the amplitude responses of the lift
oscillation and the edge vibrations for the rather speculative mercury}aluminum pair
(R

1
"4)95) in Figure 6 are obtained for the same values of k and g. Figures 5 and 6 are

plotted by varying the St values with a step of 1; a logarithmic scale is conventional for such
an analysis.

For the same water}aluminum pair, the band of frequencies around elastic resonance
near St"200 is presented in Figure 7 in more detail. This comparison of the vibration
levels for di!erent values of losses (g"0)05 and 0)2) helps in understanding the technique of
identi"cation of the elastic resonance frequency between numerous frequencies of high-level
oscillations. The losses have a signi"cant in#uence on the vibration level, only at the elastic



Figure 5. Strouhal number e!ect on the vibration of the noncavitating wing in the water. The amplitudes of
displacement of the leading and trailing edges are related to the wing chord.

Figure 6. Strouhal number e!ect on the vibration of the noncavitating aluminium wing in mercury.
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resonance frequency, because the displacement oscillation amplitudes are inversely propor-
tion to the loss coe$cient only near a resonance. Therefore, a loss variation is a sure way to
identify the resonance of the cavitating wings, as it was also shown earlier by Kovinskaya
& Amromin (1997). Observation of the curves in these "gures lets us note that all functions



Figure 7. The loss e!ect on the trailing edge displacement near the elastic resonance of wing. The wing material is
steel 316SS (thus, k"0)001 in the actual incoming #ow). The curve with the higher pea corresponds to g"0)05;

that with the lower peaks corresponds to g"0)2.
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C
y
(St) are similar, and the values of R

1
and k do not have a qualitative in#uence on C

y
(St),

although the displacement amplitudes depend on these ratios considerably.
The studied interval of St values can be divided into two parts. Vibration in the

high-frequency part of this interval is governed principally by elastic forces and has a certain
quantitative dependence on k. The elastic resonance frequencies also depend on this
parameter. In the low-frequency band the elastic forces are relatively not high. The lift
increases are associated with the hydrodynamic interaction. The unsteady vortex sheet
downstream from the trailing edge introduces the second linear scale in this problem: it is
;/u, and the Strouhal number is just the ratio of C to this scale. In the low-frequency band,
the vibration increases near certain singular values of St as a result of the interaction of
hydrodynamic damping and the added mass reaction. Within this band, the frequencies of
the high-level vibration do not depend on either the values of MR

1
, kN or on the wing shape.

4. ANALYSIS OF CAVITY INFLUENCE

The main cavitation impact on the wings is associated with changes in their lift. Therefore, it
is reasonable to start the examination of cavitation of the elastic wings by analyzing their lift
amplitude responses. An example of the elastic cavitating wing lift amplitude response is
given in Figure 8. The excitation of subharmonics for one-frequency excitation is illustrated
there; the "gure presents the three "rst harmonics. Each of these harmonics has two
signi"cant maxima within the band 0)5(log St(1)5; for the harmonic number k, the
highest response takes place at the "rst (low-frequency) maximum (for St"St

k
), and the

products kSt
k
are close to a constant.

The comparison of the responses of the same wing in cavitating and cavitation-free #ows
is given in Figure 9. The response of the cavitating wing is computed, while taking into
account the contribution of all harmonics. This comparison shows two frequency bands



Figure 8. Comparison of the lift oscillation harmonics for the cavitating hydrofoil. The numbers near the curves
mark the harmonic numbers.

Figure 9. Comparison of the dimensionless lift oscillation for the noncavitating and cavitating wings.
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where the cavity signi"cantly in#uences the lift amplitude response. The ratio of the
unsteady vortex sheet typical scale ;/u to the time-averaged cavity length ¸ has diverse
orders in the diverse frequency bands. In the band of the low-frequency rise of vibration, the
above scale and ¸ are comparable; consequently, depending on the value of the ratio
[(2n;/u)/4]/¸, the cavity}vortex sheet interaction can reduce or amplify the wing vibra-
tion. In the high-frequency band, this ratio is too small, and the cavity "lters perturbations
as a large free boundary of the non-heavy #uid. Obviously, therefore, the cavity does not
add a remarkable contribution to the high-frequency vibration. The distinct points of an
essential reduction of the wing amplitude response near frequencies of the elastic resonance
can be explained by the above "ltration of perturbations by the cavities; the cavity-free
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surface of the wing cannot make such a "ltration at the same frequency. It is necessary to
add that large cavities can cause a small change in the elastic resonance frequencies; such
a change does not exceed 2%.

The joint consideration of the lift and cavity volume oscillations clari"es the low-
frequency rise of the wing response and Figure 10 is useful for this consideration. It shows
amplitudes of the multi-frequency lift oscillation and the cavity volume oscillations. There is
an evident correlation of the two plotted curves in the low-frequency band
(1)15(log St(1)5; the band of such a correlation will be di!erent for another cavity
length). The additional lift oscillation peaks in Figures 9 and 10 are associated with the
in#uence of the cavity volume oscillations.

Typical sets of cavity volume harmonics (for k"1, 2,2, 7) are presented in Figure 11.
These sets can be di!erent principally at the di!erent values of the Strouhal number, even
for a cavity of "xed length. The most signi"cant cavity oscillations take place at the almost
Figure 11. Typical harmonics of the cavity volume oscillation. The computations are carried out for u"0)01
and ¸/C"0)5. The "rst column in each triad of harmonics corresponds to the unstable cavity that exists at
St"2)81; the second one corresponds to the cavity with the about linear response on the excitation (St"4)71); the

third one corresponds to the cavity with the signi"cantly nonlinear response on excitations (St"13)27)

Figure 10. The lift and cavity volume oscillations versus log St.
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constant values of the modi"ed Strouhal number St
c
"¸u/; based on the cavity length ¸.

This modi"ed Strouhal number is more acceptable to the identi"cation of the most
signi"cant frequencies. The numerical analysis allows determination of this modi"ed
Strouhal number. The dependency of this number on the time}averaged cavity length is
given in Figure 12. Recent experimental data (Kawanami et al., 1998) gives an approximate
constant St

c
.

Of course, the dependencies of subharmonics on the perturbation amplitude are nonlin-
ear and the relative contributions of harmonics depend on this amplitude, as well as the
response as a whole. This a$rmation is proven in Figure 13. The time-averaged cavity
length, however, has a more essential in#uence on the wing responses.

5. SCALE EFFECTS OF SUBHARMONICS

It is appropriate at this point to clarify the role of subharmonics in the scale e!ects of
unsteady cavitation. Returning to the initial inquiry about extrapolations of model test
results, it is necessary to point out all essential discrepancies in model and full-scale
conditions for marine propellers.

The model tests are carried out at the same values of the Strouhal number, but even "xing
the cavitation number is practically impossible for propellers. The "rst discrepancy appears
because the ratio (P

00
!P

c
)/o* ;2 can be varied from !rg/;2 to r g/;2, where r is the

radius of the blade and g is the gravitational acceleration. Such a variation is very small
relative to an average value of p for a propeller model of a small radius in water tunnels, but
this variation must be taken into account under full-scale conditions.

The second discrepancy is associated with the Reynolds number Re e!ect on the
incoming #ow. Model tests for marine propellers are often carried out past the models of the
corresponding ship hulls; thus, the model incoming #ow becomes nonuniform. A certain
di!erence in the velocity pro"le is caused by the Re e!ect, as is clear from experimental data.
Therefore, the excitation spectrum is di!erent in two compared cases, and the correspond-
ing di!erence in the perturbation amplitudes should not be neglected.
Figure 12. Cavity length-based Strouhal number for the most signi"cant of the cavity oscillations as a function of
the cavity of length.



Figure 13. The combined e!ect of the perturbation amplitude and Strouhal number on the cavitating wing lift
oscillations. The unmarked curve relates to u"0)025; those marked by O curve relates to u"0)05.

Figure 14. The e!ect of cavity detachment location on the cavity shape for the NACA-0009 hydrofoil. The
cavities over the top and bottom parts of the hydrofoil correspond to the di!erent #ows. The top part shows
cavities in viscous #uid (curve 1) and ideal #uid (curve 2) for p"1)5 at a"53. The bottom part shows cavities in
viscous #uid (curve 3) and ideal #uid (curve 4) for p"0)15 at a"03. These cavities are plotted jointly for ease of

comparison of these e!ects for small and high angles of attack.
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The third discrepancy is associated with the scale e!ect on the cavity detachment
location. This is not an appropriate place to describe the viscous}inviscid interaction theory
that can forecast this location [see Amromin (1985) for its description]; however, it is
appropriate to show certain results of such computations. One can see the consequence of
the above e!ect in Figure 14, where results for an ideal #uid can be considered as an extreme
case that corresponds to the very large scales. The scale e!ect on cavity length and volume is
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especially high for low values of the wing angle of attack, and such low values are customary
for marine propeller sections. This scale e!ect must amplify the contribution of subhar-
monics.

The fourth discrepancy is associated with the k e!ect. Because of the higher values of ;,
the full-scale wings or blades are e!ectively softer, so their response to excitation should be
smaller, and so should be the subharmonics.

An example of the qualitative comparison of the amplitudes of cavity volume oscillation
is given in Figure 15, where numerical results are shown in which the four above-mentioned
discrepancies have been taken into account. Scale e!ects on cavity detachment and length
can be estimated in the framework of potential #ow theory by variations in the X

1
and

X
2

values for the same p. These variations were found here with the use of the above-
mentioned viscous}inviscid interaction theory. The scale e!ect on the excitation magnitude
was estimated using typical empirical data (Amromin et al. 1993). Of course, such results
are far from a direct prediction of the properties of the actual marine propellers. Rather they
are a basis for a future examination. The auxiliary comparison of the second harmonic in
Figure 16 may be even more useful as a basis for the qualitative analysis. The point is that
experts o!er two opinions: (a) that the dimensionless pressure pulsation is higher using
model marine propellers; (b) that the higher pulsation corresponds to the full-scale subhar-
monics. The curves in Figure 16 have shown that the two opinions are not contradictory;
the relatively high full-scale subharmonics can occur, but only in narrow intervals of the
excitation that correspond to the signi"cant Strouhal numbers.

6. CONCLUSIONS

The numerical simulation of the cavitating elastic wing vibration was made for various
free-stream speeds, moduli of elasticity, #uid densities and wing densities. It was shown that
the cavitation e!ects on wing vibration are more signi"cant in the low-frequency bands,
where the cavities multiply the number of the lift maxima and minima. The mono-frequency
perturbation of the incoming #ow causes the subharmonics of the wing response, as a result
Figure 15. Comparison of amplitudes of the cavity volume oscillations for the model and full-scale conditions.



Figure 16. Comparison of the logarithm of the second harmonics of the cavity volume oscillation for the model
and full-scale conditions.

750 E. AMROMIN AND S. KOVINSKAYA
of the parametric excitation of this wing by the oscillating cavity. The cavity volume
oscillation is a nonlinear function of the incoming #ow perturbation amplitude, so lift
oscillation and the vibration level are nonlinear functions of this amplitude too. The most
signi"cant response of the cavitating elastic wing appears in the narrow intervals of the
relatively low Strouhal number which is based on the time-averaged cavity length. This high
response is associated with the high contribution of the subharmonics.
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